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Abstract 

The Ps function derived from anomalous-dispersion 
data [Okaya, Saito, & Pepinsky (1955). Phys. Rev. 98, 
1857-1858] has been tested with observed data for 
an Hg derivative of a small protein, avian pancreatic 
polypeptide [Glover, Moss, Tickle, Pitts, Haneef, 
Wood & Blundell (1985). Adv. Biophys. 20, 1-12]. 
The Ps map was superimposed on the four Hg sites 
via a sum function and negative densities were elimi- 
nated from the resultant map. This map, with 
appropriate density inserted at Hg sites, closely 
resembles a map calculated with true phases; the two 
maps have a correlation coefficient of 0-67. For 2109 
reflexions the unweighted mean phase error is 39.9 ° 
but with IFoFcl weighting this reduces to 29.5 °. 

Introduction 

Okaya, Saito & Pepinsky (1955) proposed the use of 
anomalous X-ray dispersion for the solution of crystal 
structures through interpretation of the function 

P~(u)=~,[[F(h)12-lF(K)12]sin27rh.u. (1) 
h 

The scattering factor for an atom in the case of 
anomalous scattering can be written as f+  if' where 
the real part, f, includes an anomalous component. 
The structure factor, F(h), can be written as 

F ( h ) =  ~ (fj+/f~-') exp27rih.r~ (2) 
j = l  

and 

F(h) 2 = F(h)* F(h) = ~. ~ ( f  + if;)(fj - if~') 
i = l j = l  

Similarly 

x exp [27rih. ( r , -  r~)]. (3) 

IF(K)I = ~ ~ (f, + i/7)(£- iTS') 
i = l j = l  

× exp [-27rib.  (ri - rj)]. (4) 

From (3) and (4) 

F(h)2-lF(h)2=2i ~ ~ ( f  +ifr)(fj-ifj ') 
i=l j= l  

xsin 2¢rh. ( r i - r j ) .  (5) 
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Table 1. f~'f -f'[fj values with respect to different i,j 
combinations 

a.s. n.s. 
a.s. 0 f~'f, J n.s. -f','fj 0 

Combination of terms involving (i,j) and (j, i) gives 

[(f, + i f T ) ( £ - i f ; ) - ( f  -if; ')(£ + if';)] 

xsin 2rrh. ( r , -  rj) = 2i(fi'f~-f~f) 

x sin 2rrh. ( r i - r j ) .  (6) 

Combining (5) and (6), we obtain 

F(h)12-1F(K) ==2 ~ ~ (fS'f-f"fJ) 
i = l j = l  

x gin 27rh. (ri - rj). (7) 

Thus the Ps function has peaks of weight proportional 
to (fTfj- f j ' f )  at positions r s - r ,  [see, for example, 
Pepinsky, Robertson & Speakman (1961), pp. 273- 
277]. The information contained in this function is 
best appreciated by considering the case with m 
anomalous scatterers (a.s.) all of the same kind in the 
presence of normal scatterers (n.s.). For i = a.s. and 
j = a.s. 

f~'f - f : :£=( f j ' / £ - f~ / f ) f~ .  (8) 

which always equals zero because the ratio fj'/f~ is 
independent of the site occupancy or the thermal 
motion. The f~'f-f;'fj values are listed in Table 1. 

Thus there are positive peaks from each anomalous 
scatterer to each non-anomalous scatterer and nega- 
tive peaks in the reverse direction. This antisymmetric 
pattern is inherent in the form of the Ps function. The 
P, map is a highly deconvoluted vector function with 
only re(n-m) positive peaks instead of the usual 
n(n - 1), where n is the number of atoms and m the 
number of anomalous scatterers in the unit cell. 

The P~ function, considering the positive regions 
alone, contains information consisting of a degraded 
superposition of m images of the structure, each 
image having a different anomalous scatterer at the 
origin. The degradation is due to positive and negative 
peaks cancelling where there is any centrosymmetric 
arrangement in the overlapped images; clearly, if m 
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is large and the structure is complex, a great deal of 
information is lost in this way. 

Pepinsky (1956) and Pepinsky & Okaya (1957) 
proposed that a superposition method could be used 
to find a single image of the structure when the 
positions of the anomalous scatterers were known, 
and this was demonstrated to be so for small struc- 
tures. However, since that time there have been great 
advances in experimental techniques and in comput- 
ing facilities and we decided to explore the limitations 
of the Ps function by a test with a small known protein. 

The test procedure 

The structure chosen for the test was that of the 
hormone avian pancreatic polypeptide (APP), a small 
globular protein containing 36 amino-acid residues 
(Glover et al., 1985). The native product gives X-ray 
data to 0.98 ~ resolution but 2-04/~ anomalous-scat- 
tering data are avaliable for an isomorphous mercury 
derivative (Pitts, Tickle, Wood & Blundell, 1982). The 
native material forms crystals of space group C2 with 
a =34.18, b =32.92, c = 28.44 ~ and/3 = 105.30 °. In 
the Hg derivative there is one heavy atom per 
molecule, or four in the unit cell. A total of 2109 
independent pairs of magnitudes, F(h) and F (h ) ,  
were available from anomalous-scattering measure- 
ments. By the use of anomalous differences 

AF(h) = IF(h)l- IF(h)l (9) 

input into either the MULTAN (Main, Fiske, Hull, 
Lessinger, Germain, Declercq & Woolfson, 1980) or 
SAPI (Yao Jiaxing, Zheng Chaode, Qian Jinzi, Han 
Fuson, Gu Yuanxin & Fan Haifu, 1985) programs, 
the positions of the four Hg atoms can easily be found 
(Mukherjee, Helliwell & Main, 1989). These positions 
can then be used to compute a superposition map via 
a sum function, where the Fourier coefficients are 

x ( h ) = [  F(h) 2 - ]F (h )2 ]  ~ exp27rih. R,, (10) 
i=1 

where Ri is the position of the ith anomalous scatterer. 
Under ideal conditions, with no information lost by 
positive-negative peak annihilation, the resultant 
map would show an image of the structure, with 
fourfold weight (assuming equal occupancy of 
anomalous scatterers) and correctly positioned with 
respect to a conventional crystallographic origin plus 
12 displaced ghost images of the structure with unit 
weight. Equating all negative density to zero should 
give a map, Q~, dominated by density representing 
the true structure. 

We tried modifications of the procedure described 
above as follows: 

(i) remove negativity of the P~ function before 
calculating a sum function, 

(ii) density modification of the final sum function 
so that all density above a certain minimum level was 

Table 2. Errors of Qs map arranged in descending order 
of lFoF~ 

Fo: observed  s t ructure  factor ;  Fc: ca lcula ted  s t ructure  fac to r  f rom 
Qs map ;  NR:  n u m b e r  o f  reflexions in the group;  IFoFcl: m i n i m u m  
IFoF¢l in the g roup ;  W M E :  IFoF~l weighted mean  phase  error;  ME:  
mean  phase  error.  

N R  IfoFcl W M E (  ° ) M E (  ° ) 

200 3432 23.87 23.09 
400 2127 24.62 24-72 
600 1483 25.93 27.64 
800 1116 26.89 29.54 

1000 869 27-44 30.54 
1200 649 28.00 31.72 
1400 489 28.41 32.76 
1600 347 28.85 34.23 
1800 201 29.16 35.69 
2000 70 29.41 38.09 
2109 0 29.47 39.93 

Table 3. Errors of Qs map grouped in descending order 
of resolution 

NR: N u m b e r  o f  reflexions in the g roup;  RES: resolut ion range;  
W M E :  [FoFc[ weighted  m e a n  phase  error;  ME: mean  phase  error.  

N R  RES (/~) W M E  (o) M E  (°) 

21 10.0- 40.34 70.81 
8 9.0-10-0 15.63 24.25 
8 8.0-9.0 15-03 44.50 

20 7.0-8.0 17.07 39-55 
27 6.0-7.0 29.48 43.74 
63 5-0-6.0 23.00 38.51 

128 4.0-5.0 33.70 41.13 
361 3.0-4.0 28.42 36-43 

1473 2.0-3-0 30.26 40.30 

changed to a fixed value. The rationale here was to 
reduce the effect of the ghost images while, at the 
same time, enhancing any slightly reduced regions of 
the main image. 

In fact we found no improvement with these 
modifications and the results we present are for a Q~ 
map derived by the first-described procedure. 

Results and concluding remarks 

The first very clear conclusion was that the Qs map, 
with density inserted at the Hg sites, bore a very 
strong resemblance to the true electron density; a 
conventional correlation coefficient was 0.67. We 
compared the phases of the Qs map obtained by 
Fourier transformation with the true phases and we 
show this comparison in Table 2. The reflexions are 
taken in the order of the product leo[ x IFcl where Fo 
is the observed structure factor and Fc is the Fourier 
coefficient of the Qs map. For all the 2109 reflexions 
available within the 2.04 A sphere the mean phase 
error was 39.93 ° but with IFoFcl weighting 
this was reduced to 29.47 ° . From the results in the 
table it is evident that the mean phase error is strongly 
correlated with the weight being used. 

We also analysed the phase errors from the resol- 
ution point of view. The results are listed in Table 3. 
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The very-low-resolution (within 10A) solvent- 
affected reflexions have quite large phase errors. 
However this situation can be improved by sharpen- 
ing the data to E's but it turns out that the overall 
phase error remains unimproved. As is conventional 
in protein crystallography we excluded reflexions cor- 
responding to resolution greater than 10 A when com- 
puting the Qs map. 

Next we computed a map, Qoc, with the observed 
structure amplitudes and phases from the Qs map. 
This Qoc three-dimensional map, plotted by FRODO 
(Jones, 1985), assembles the characteristics of the 
correct model. There is little doubt that the Qo¢ map 
would quickly have led to a complete structure deter- 
mination via a model-fitting exercise. We show in 
Fig. 1 a part of the FRODO Qo¢ map, compared with 
the true model. Again, in Fig. 2 we present two sec- 
tions of the Qo¢ map, arbitrarily chosen at y = 3/8 
and y = 3/4, compared with sections calculated with 
correct phases. For both kinds of presentation the 
agreement is by no means perfect but the general 
correspondence can be seen. 

We conclude that with modern techniques of col- 
lecting optimized anomalous-scattering data, and of 
carrying out large-scale Fourier transformations 
quickly and easily even on modest computational 
facilities, the Ps function approach has much to offer. 
It is our intention to extend our testing to larger and 
more complex structures and to explore possible pro- 
cedures for improving the quality of the acquired 
phase information. 
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~ app quo map -Fig. 2. Representations of electron density for Hg-APP for: (a) 
y=3/8 with phases from the Qs function; (b) y=3/8 with 

Fig. 1. A part of the three-dimensional Qoc map for Hg-avian correct phases; (c) y = 3/4 with phases from the Qs function; 
pancreatic polypeptide (APP) compared with the true model, and (d) y = 3/4 with correct phases. 
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Abstract 

A new approach to the estimation of the concentration 
of random stacking faults in close-packed structures 
(and also multilayers) is presented. It is based on the 
Monte Carlo computer simulation of the arrangement 
of stacking faults in a crystal, given by an appropriate 
h-k  sequence. Thus the corresponding intensity 
(structure-factor) distribution along the streaked 
reciprocal-lattice rows may be calculated from nearly 
the same expression as for a perfect multilayer struc- 
ture. In particular, good agreement is observed with 
the computations on the basis of the intensity 
equations derived for several particular cases. Some 
peculiarities in the diffracted intensity distribution of 
crystals with multilayer structures containing random 
stacking faults of different types, or having different 
dimensions of the hexagonal unit cell, are pointed out. 

1. Introduction 

Stacking faults (SF) are frequently observed in close- 
packed structures. In some cases they are expected 
to be randomly distributed, i.e. the spacing between 
them is random. Random stacking faults (RSF) may 
result in one or more of the following diffraction 
effects: shift, broadening, asymmetry of the diffrac- 
tion maxima and redistribution of the integrated 
intensity. Pertinent information about the types of SF 
as well as their concentrations in crystals can be 
obtained from a comparison of theoretically pre- 
dicted diffraction effects with those visible on X-ray 

diffraction patterns. The theory of the intensity of 
X-ray diffuse scattering by the simplest close-packed 
structures such as h.c.p. (2H), f.c.c. (3C) and 4H 
containing random faults has been well developed by 
Wilson (1942), Paterson (1952), Christian (1954), 
Johnson (1963), Lele, Anantharaman & Johnson 
(1967) and Lele, Prasad & Anantharaman (1969). 
Because RSF are also observed in multilayer (long- 
period) polytype-like structures [see Verma & 
Krishna (1966), Nikolin (1984), Sebastian & Krishna 
(1987) and literature quoted therein], attempts have 
been made to construct a more general diffraction 
theory by Kakinoki & Komura (1965), Kakinoki 
(1967), Rushits & Mirzaev (1979), Kagan, Unikel' & 
Fadeeva (1982) and Berliner & Werner (1986). 
Nevertheless, the Kakinoki & Komura (1965) and 
Kakinoki (1967) approach, where the correlation 
between s neighbouring layers must be taken into 
account, becomes exceedingly complex even for 
structures with comparatively low periodicity, since 
2 s- l-order matrices are necessary. Later, the theory 
was developed by Rushits & Mirzaev (1979), who 
studied the stacking disorder due to deformation 
faults only. The Kagan et al. (1982) method treated 
the problem for crystals of any symmetry group and 
complexity but with low defect concentrations. 

In the following, we will give a technique to derive 
the intensity distribution of any given close-packed 
structure with arbitrary content of RSF of all existing 
types. Its distinguishing feature consists of a random 
arrangement of SF's by the Monte Carlo simulation 
computer program. 
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